Team of chemists from Kaunas University of Technology (KTU), Lithuania developed a new material for perovskite solar cells. After polymerisation, it can be used as a hole transporting layer in both regular and inverted architecture solar cells; in both cases, the solar elements constructed have better power conversion efficiencies and operational stability.
Perovskite solar cells (PSCs) have received significant interest from the photovoltaic community due to their skyrocketing power conversion. Moreover, PSCs may be scaled up using a low-cost production process from widely available abundant raw materials. These aspects show promise for PSCs as a future mainstream photovoltaic technology. However, the long-term stability of perovskite solar devices under practical working conditions still requires further improvement to satisfy market demands.
A novel 9,9′-spirobifluorene derivative bearing thermally cross-linkable vinyl groups, synthesised by the team of chemists at KTU, Lithuania, could help solving some of the above-mentioned challenges. After thermal cross-linking, a smooth and solvent-resistant three-dimensional (3D) polymeric network is formed, which was used as a hole-transporting material to construct perovskite solar cells.
“The copolymerisation takes place at a relatively low temperature (103°C), which makes the technology safe for use in the casting of a layer on perovskite, which is not resistant to temperatures above 140°C. Another very important aspect is that the polymerisation process is incredibly fast, apparently due to the specific spatial configuration of the monomer,” says Šarunė Daškevičiūtė-Gegužienė, one of the authors of the invention, PhD student at KTU Faculty of Chemical Technology.
The resulting devices exhibited better energy conversion efficiency and, most importantly, stability than conventional hole transporting materials (PTAA or Spiro-OMeTAD).
High commercialisation possibilities, patent pending
PSCs, layered, new generation solar cells can have two architectonic structures – regular (n-i-p) and inverted (p-i-n). In the latter, the hole transporting materials are deposited under the perovskite absorber layer.